3DFATMIC

Πρόγραμμα Μοντέλου 3-D Υπόγειας Ροής, Μεταφοράς και Θανάτου-Εξάλειψης Μικροβίων και Χημικών


3DFATMIC is a 3-Dimensional Subsurface Flow and FAte and Transport of MIcrobes and Chemicals model. 3DFATMIC is designed to simulate transient and/or steady-state density-dependent flow field and transient and/or steady-state distribution of a substrate, a nutrient, an aerobic electron acceptor (e.g., the oxygen), an anaerobic electron acceptor (e.g., the nitrate), and three types of microbes in a three-dimensional domain of subsurface media. This model can handle:

Scope: 3DFATMIC computes and predicts the distribution of pressure head, moisture content, flow velocity, and total head over a three-dimensional region in either completely saturated, or completely unsaturated, or partially unsaturated or partially saturated subsurface media. It also computes and predicts the spatial-temporal distribution of microbes and multi-chemical components. The media may consist of as many types of soils and geologic units as desired with different material properties. Each soil type may be isotropic or anisotropic. The processes governing the distribution of chemical and microbe concentration and temperature include:
Method: The generalized Richards' equation and Darcy's law governing pressure distribution and water flow in saturated-unsaturated media are simulated with the Galerkin finite-element method subject to appropriate initial and four types of boundary conditions. The equations (a set of PDEs) of transport and fate of chemicals and microbes are derived based on the principle of conservation of mass and the hypothesis of Monad kinetics. The coupled set of PDEs simulated with either the conventional finite-element methods or the hybrid Lagrangian-Eulerian finite-element method with the adaptive local grid refinement and peak capturing scheme subject to appropriate initial and four types of boundary conditions. Hexahedral elements, triangular prism, and tetrahedral elements are used to facilitate the discretization of the region of interest.

Input:

(1)Geometry in terms of nodes and elements, and boundaries in terms of nodes and segments;
(2)soil properties including (a) saturated hydraulic conductivities or permeabilities; (b) compressibility of water and the media, respectively; (c) bulk density; (d) three soil characteristic curves for each type of soil or geologic unit which are the retention curve, relative conductivity vs. head curve, and water capacity curve; (e) effect porosity; and (f) dispersivities, and effective molecular diffusion coefficient for each soil type or geologic unit;
(3)initial distribution of pressure head over the region of interest;
(4)net precipitation, allowed ponding depth, potential evaporation, and allowed minimum pressure head in the soil;
(5)prescribed pressure head on Dirichlet boundaries;
(6) prescribed fluxes of chemicals and heat on Cauchy and/or Neumann boundaries;
(7)artificial withdrawals or injections of water;
(8) number of chemical components as well as microbes and microbe-chemical interaction parameters such as specific yields, utilization coefficients, saturation constants, etc.;
(9) artificial source/sink of water and all chemical components, heat and microbes;
(10) prescribed concentrations of all chemical components and microbes as well as temperature on Dirichlet boundaries;
(11) prescribed fluxes of all chemical components and heat on variable boundaries; and
(12) initial distribution of all chemical component and microbe concentrations and temperature. All inputs in items 4 through 11 can be time-dependent or constant with time.

Output:

(1) pressure head, total head, moisture content, and flow velocity over two-dimensional grid at any desired time;
(2) water fluxes through all types of boundaries and amount of water accumulated in the media at any desired time;
(3) distribution of chemical concentrations, microbes, and temperature over a three-dimensional grid at any desired time;
(4) amount of chemical and heat fluxes through all boundary segments.

Requirements

486/Pentium (Pentium recommended) with 16 MB RAM and FORTRAN Compiler. Any Workstation, e.g., IBM RS6000, DEC Alpha, Silicon Graphics, Sun SparcStation, and HP 9000 Series.

Συνδεθείτε με τα επόμενα ενδιαφέροντα Sites και δεν θα χάσετε!

Κατάλογος εργαλείων προγραμματισμού σε Windows και για τον Web
Κατάλογος επιστημονικών προγραμμάτων της MP & Associates που είτε δεν υπάρχει αντιπρόσωπος στην Ελλάδα και έτσι τα εισάγουμε είτε υπάρχει και μπορούμε να σας τα προμηθεύσουμε μέσω αυτού
Incredible NetworksΤελευταία Ενημέρωση 27 Ιουλίου 2004 - Last Revised on July 27th 2004
Προηγούμενη σελίδα
Η ΠΡΩΤΗ και ΜΟΝΑΔΙΚΗ εταιρία στην Ελλάδα που ειδικεύεται ΑΠΟΚΛΕΙΣΤΙΚΑ στο ΤΕΧΝΙΚΟ-ΕΠΙΣΤΗΜΟΝΙΚΟ ΛΟΓΙΣΜΙΚΟ
Copyright 1998-2005 MP & Associates - Φορμίωνος 119-121 - ΑΘΗΝΑ 16121 - Τηλ: (210) 7600955 - Fax: (210) 7600956