Μοντέλο Μεταφοράς Διαλυμάτων και Θερμότητας σε 3-D

A Windows Version of the Computer Code for Simulation of Heat and Solute Transport in Three-Dimensional Ground-Water Flow Systems


HST3D-ANE is a powerful user-friendly interface for HST3D integrated within the Argus Open Numerical Environments (Argus ONE) modeling environment. HST3D-ANE allows the user to automatically input all data, run HST3D, and visualize the results. ANE integrates CAD, GIS, Database, Conceptual Modeling, Geostatistics, Automatic Grid and Mesh Generation, and Scientific Visualization within one comprehensive graphical user interface (GUI).
Set HST3D control parameters using an easy and user-friendly dialog box.
Assign physical properties using GIS and intuitive drawing tools.
Automatically mesh the problem domain and run HST3D.
Visualize HST3D results using 3D visualization tools on top of the problem domain.
HST3D-ANE includes the Argus ONE Grids Module. This Argus ONE Module can also be used with your other models as well.
HST3D enables you to:


The Heat and Solute Transport Program simulates ground-water flow and associated heat and solute transport in three dimensions. The HST3D-ANE program may be used for analysis of problems such as those related to subsurface-waste injection, landfill leaching, saltwater intrusion, freshwater recharge and recovery, radio-active waste disposal, water geothermal systems, and subsurface-energy storage. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, and solute-mass fraction. The solute-transport equation is for only a single, solute species with possible linear-equilibrium sorption and linear decay. Finite-difference techniques are used to discretize the governing equations using a point-distributed grid. The flow, heat, and solute-transport equations are solved, in turn, after a partial Gauss-reduction Scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions.
The basic source-sink term represents wells. A complex well-flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow-rate constraints. Boundary-condition types offered include specified value, specified flux, leakage, heat conduction, an approximate free surface, and two types of aquifer-influence functions. All boundary conditions can be functions of time.
Two techniques are available for resolution of the finite-difference matrix equations. One technique is a direct elimination solver, using two-line successive over-relaxation.
A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer failure. HST3D is a descendant of the Survey Waste Injection Program (SWIP) written for the USGS under contract.
HST3D-ANE is now connected with the general Pre and Postprocessor Argus Numerical Environments (ANE) that permits it to work under Windows with easy database management. Data input and output may be in metric (IS) units or inch- pounds units. Input and Output may be represented as tables of dependent variables and parameters, zone contour maps, and plots of dependent variables versus time.

Pre and Postprocessors

HST3D-ANE is a powerful user-friendly interface for HST3D developed by ED-Software. With this interface developed for Windows 3.1/95/NT, the data file corresponding to your problem is generated. All the parameters of the model are presented in a series of menus and windows. The Argus Numerical Environments (ANE) software is used for the generation of the geometrical parameters. ANE integrates CAD and GIS mapping systems and permits visualization of the model region. ANE generates the three-dimensional grid in planar slices. Any changes of the grid are made directly on the screen using the comprehensive user interface of ANE. In the same way, the different types of boundary conditions and zoning are also specified directly on the screen.
This new interface allows the user to automatically input all data, run the correct size of HST3D and visualize the results all within one easy-to-use graphical package.
A Help Menu under Windows is also available with the new interface.
HST3D-ANE reformats the classic output file created by HST3D in a format readable by the graphics packages ANE and SURFER.

Overview of the Simulator

The equations that are solved numerically using the Finite-Difference technique are:
1. The saturated ground-water flow equation written in the pressure dependent variable. This equation is a combination of the conservation of total-fluid mass and Darcy's Law for porous media.
2. The heat transport equation from the conservation of enthalpy for the fluid and porous medium
. 3. The solute transport equation from the conservation of mass for a single solute species that may decay and also adsorb onto the porous medium. These three equations are coupled through the dependence of advective transport on the interstitial fluid velocity field, the dependence of fluid viscosity on temperature and solute concentration, and the dependence of fluid density on pressure, temperature and solute concentration.
Numerical solutions are obtained for each dependent variable: pressure, temperature and mass fraction (solute concentration). Finite-difference techniques are used for spatial and temporal discretization of the equations. The spatial discretization grid is generated and visualized on the screen. Contours maps or scarce data of the initial conditions and the parameters may be interpolated on the grid using the ANE interface. A wide variety of boundary conditions on heat-flow and solute transport may be simulated with HST3D.
HST3D has been compiled using the Lahey-EM32 Compiler. This allows much larger executables than the PC version of HST3D. Because of the 32-bit word size used, execution times are up to three times faster than code generated with other compilers. HST3D-ANE comes with three executables requiring 4, 8 and 16 MB RAM. These files allow the modeling of 2,500, 7,000 and 14,000 nodes respectively.

Key Features

Specified-value and specific-flux boundary conditions are independent on each portion of the boundary and may vary with time.
In addition, specified heat and solute flux boundary conditions are available.
Leakage, aquifer-influence function and river leakage boundary conditions are available.
Porous-media thermal properties, dispersivity and compressibility may have spatial variation defined by zones.
A point-distributed, finite-difference grid is used, rather than a cell or block-centered grid. It allows a better truncation error and an easy incorporation of boundary conditions.
The heat-conduction boundary condition is generalized to apply to any cell face.
Global flow, heat and solute balance calculations are performed including flux calculations through specified pressure, temperature and mass fraction boundaries.
A robust algorithm for the computation of the optimum over-relaxation factor for the two-line, successive over-relaxation, matrix solution method is employed with a convergence criterion that includes the matrix spectral radius estimate.
All arrays with lengths depending on the size of the problem are in two variably-partitioned arrays, integer and real, to facilitate double precision arithmetic.
Arrays required for thermal or solute calculations exclusively are eliminated if only one of these transported quantities is being simulated which results in a considerable decrease in computer storage.
Arrays used for a specific type of boundary condition or source sink condition are dimensioned automatically to the length required.
The allocation of space for the direct equation solver is explicitly determined during array-space allocation rather than estimated.
A system of logical variables presented as questions are used to select the different options and control program execution.
The input file is a free-format ASCII file generated by the Windows interface. The input file may be changed from the DOS prompt or read by the HST3D-ANE interface. When the input file is not completed, the read command distributes the existing values of the incomplete input file at their place.
A read-echo file may be written. It assists the user in locating errors in the data-input file. A complete visualization of the zones is available.
Although the internal calculations of the program are performed in metric units, the input and output can be chosen to be in inch-pound units.
Error tests are included to locate mistakes in data input.
Error messages are printed explicitly rather than as code numbers.
The solute concentration can be chosen to be the mass fraction or a scaled mass fraction that ranges from 0 to 1.
Map contours of any output or input data may be created directly on the screen.
Initial pressure conditions can be specified to be other than hydrostatic. For example, an initial water-table configuration can be used.
Precipitation and replenishment can be specified using the distributed flux-boundary conditions.
The conductive heat loss to overburden and underburden is a general heat transfer calculation, applicable to any cell face in the region.
The well-riser calculation has been formulated to solve the total energy and momentum balance equations simultaneously using the Bulirsh-Stoer algorithms for integration of the ordinary differential equations.
The well bore equations are implicitly coupled to the system equations for cases of cylindrical geometry.
The well-datum pressure and the well flow rate calculations may be performed explicitly or iteratively in conjunction with the solution of the flow equation.
The full nine components or an approximate three-component dispersion coefficient tensor may be used for cross-dispersive flux calculations.
One way to objectively assess the impact of existing or proposed activities on ground-water quantity and quality is through the use of ground-water flow, heat and solute transport models. HST3D allows a quantitative understanding of how the sources and sinks, the boundary conditions and the aquifer parameters interact to cause ground-water flow patterns and consequent thermal and solute concentration movement in a studied area. The magnitude of concentrations and discharges at the boundary of the studied area are of particular interest in the study of a contaminated aquifer. The degree of realism and the accuracy of a given simulation is strongly dependent on the quantity and quality of the parameter distribution, boundary conditions and source sink data.


HST3D is suitable for simulating ground-water flow and the associated solute transport in saturated, three-dimensional flow systems with variable density and viscosity. As such, the code is applicable to the study of waste injection into saline aquifers, land-fill contaminant movement, sea-water intrusion in coastal regions, brine disposal, fresh-water storage in saline aquifers, heat storage in aquifers, liquid-phase geothermal systems, and similar transport situations. If needed, only the ground-water flow may be solved. Also, after the computation of the ground-water flow, only the heat or the solute transport equation may be solved. Three-dimensional Cartesian or axi-symmetric, cylindrical coordinate systems are available.
The finite-difference techniques used for spatial and temporal derivative approximations have some limitations:

The HST3D-ANE package includes:


PC 486/Pentium with 16 MB RAM and Windows 3.x, 95 or NT.

Συνδεθείτε με τα επόμενα ενδιαφέροντα Sites και δεν θα χάσετε!

Κατάλογος εργαλείων προγραμματισμού σε Windows και για τον Web
Κατάλογος επιστημονικών προγραμμάτων της MP & Associates που είτε δεν υπάρχει αντιπρόσωπος στην Ελλάδα και έτσι τα εισάγουμε είτε υπάρχει και μπορούμε να σας τα προμηθεύσουμε μέσω αυτού
Incredible NetworksΤελευταία Ενημέρωση 27 Ιουλίου 2004 - Last Revised on July 27th 20048
Προηγούμενη σελίδα
Copyright 1998-2005 MP & Associates - Φορμίωνος 119-121 - ΑΘΗΝΑ 16121 - Τηλ: (210) 7600955 - Fax: (210) 7600956