2-D Variably Saturated Analysis Model

VAM2D (Variably saturated Analysis Model in Two Dimensions) is a two-dimensional (2-D) finite-element model that simulates transient or steady-state water flow and contaminant transport in porous media. VAM2D analyzes unconfined flow problems using a rigorous saturated-unsaturated modeling approach using efficient numerical techniques. Accurate mass balance is maintained even when simulating highly nonlinear soil moisture relations. Hysteresis effects in the water retention curve can also be simulated. A wide range of boundary conditions can be treated including seepage faces, water table conditions, recharge, infiltration, evapotranspiration, and pumping and injection wells. The contaminant transport option can account for advection, hydrodynamic dispersion, equilibrium sorption, and first-order degradation. Transport of a single species or multiple parent-daughter components of a decay chain can be simulated. The code can perform simulations using an areal plane, cross-section, or axisymmetric configuration. An independent review of flow and transport computer codes conducted for the U.S. NRC (Kozak et al., 1989) states about VAM2D: "It is easy to use, is robust and has a wide range of numerical stability."



The saturated-unsaturated flow equation is solved using the Galerkin method with either Picard or Newton-Raphson iterative schemes to treat nonlinearities. The use of upstream weighted residual finite-element method is used to solve the advective-dispersive transport equation. This circumvents numerical oscillation problems. Matrix solutions of the flow and transport problems are performed using efficient iterative solvers, based on the preconditioned conjugate gradient and ORTHOMIN methods, for symmetric and a nonsymmetric matrices, respectively.


Coordinate Systems and Grid Configurations

The input of VAM2D has been structured to simplify defining the problem for the computer. Cartesian coordinate systems in an areal (x-y) plane and a vertical (x-z) plane as well as an axisymmetric cylindrical coordinate (r-z) system are available. The model region is divided into a number of rectangular and/or orthogonal curvilinear elements. Such elements are simple to deal with and their matrices can be easily computed using efficient influence-coefficient formulas. Furthermore, regions with irregular boundary geometry can be accurately represented. When a rectangular grid is used, VAM2D allows the grid to be inclined at any angle to accommodate sloping formulations (e.g., hill-slope problems). The code also allows the user to obtain a stepped approximation of irregular boundaries and lateral discontinuities by blocking out unwanted elements in the grid.

Material Properties

Heterogeneous and anisotropic material properties may be included in flow and transport analyses. Layering, discontinuities, and other heterogeneities can be treated. For a variably-saturated flow analysis, soil moisture relations are supplied to the code in functional form using the well known Brooks-Corey and Mualem van Genuchten relations with extensions to handle hysteresis. For transport analysis, velocity-dependent dispersion, moisture-dependent retardation, sorption, and decay are permitted.

Boundary Conditions

Boundary condition inputs for water flow simulations may be in terms of prescribed nodal values of head or prescribed integrated nodal fluid flux values. In a variably saturated flow analysis, the code can accommodate seepage faces, infiltration or evaporation, and plant root extraction. For simulations of deep soil profiles, the lower boundary condition can be set to approximate a free draining soil with zero vertical pressure head gradient. Boundary conditions for flow may be either constant in time, or variable with either stepwise or continuous changes.
Boundary condition inputs for solute transport simulations may be prescribed nodal values of concentration or prescribed integrated nodal values of solute mass fluxes. Solute concentration or flux values at the boundaries can be either constant in time, or variable in time with either continuous or stepwise changes. An additional option is available for modeling conditions in which source concentrations exhibit first-order decay.

Simulation Outputs

Outputs of flow analyses include nodal values of hydraulic or pressure head, Darcy velocities and saturation values. These outputs may be printed at specified intervals or time values. A print-out option that provides relationships of simulated head versus time is also available for user-specified observation points. Outputs of solute transport analyses are nodal values of concentration and solute fluxes. For specified nodes, the relationships of concentration versus time (breakthrough curves) can also be provided. Complete flow and transport mass balances may be provided. To facilitate postprocessing using a wide variety of commercial data analysis and graphical software, the model output can be written in a general x,y,z column format.


VMPLOT provides postprocessing for VAM2D flow and transport simulations. Using VMPLOT, you can generate the following:

Συνδεθείτε με τα επόμενα ενδιαφέροντα Sites και δεν θα χάσετε!

Κατάλογος εργαλείων προγραμματισμού σε Windows και για τον Web
Κατάλογος Επιστημονικών ΠρογραμμάτωνΚατάλογος επιστημονικών προγραμμάτων της MP & Associates που είτε δεν υπάρχει αντιπρόσωπος στην Ελλάδα και έτσι τα εισάγουμε είτε υπάρχει και μπορούμε να σας τα προμηθεύσουμε μέσω αυτού
Incredible NetworksΤελευταία Ενημέρωση 27 Ιουλίου 2004 - Last Revised on July 27, 2004
Προηγούμενη σελίδα
Copyright 1998-2005 MP & Associates - Φορμίωνος 119-121 - ΑΘΗΝΑ 16121 - Τηλ: (210) 7600955 - Fax: (210) 7600956